Math 564: Advance Analysis 1

Lecture 24

Characterization of completeren. A worned rector space tis complete if and adjut every absolutely convergent series converges (in norm). Proof => Suppose (xn) = X has absolutely convergent services i.e. Illxull < 00. We need to show the sequence $\sum x_n$ of partial runs is landy. $\|\sum x_n - \sum x_n\|_{1} = \|\sum x_n\| \le \sum \|x_n\| \le \sum \|x_n\| = N$ as $N \to N$. $\|n \in \mathbb{N}$ $n \in \mathbb{N}$ $n = \mathbb{N}$ $n = \mathbb{N}$ $n = \mathbb{N}$ (= impose even abs. converget errice onverges and bet (x_) SX be a Carry segmence. By the Canchy property, it's knowly to prove Mt a subsignance at (ka) we verges in X. WLOLE, by suitching to a subsignation we may assure MA to, $||x_n - x_{n+m}|| < 2^{-n}$ Then let $y_n = x_n - x_{n-1}$, where y = O G X. Observe WA Z y = O + [Xo-O+ (X, - Xo] + (Xn - Xn) = Xn and $u|_{so} \sum_{i=0}^{||y_i||} = \sum_{i=0}^{||X_i - X_{i-1}||} = \frac{||x_0||}{|x_0||} + \sum_{i>||X_i - X_{i-1}||} \le \frac{||x_0||}{|x_0|} + \sum_{i>||X_i - X_i||} \le \frac{||x_0||}{|x$ Thus, Zy; converges and that's the limit of (Kn), Det. A moned vector space is called a Banach space if it is complete. Examples. (a) IR^d, Id (b) Mnem (IR) with the operator norm. (c) (([0,1]) with the uniform norm. (or. L'(X, V) is a Banach spher for any measure sphere (X, V). Proof. Suppose Ellfully 200 cml show MA Efa couverses in L'horan. By the MCT, we have MA JEIfil = Ellfully < 00.

(1)=>(3). Suppose bounds a waterdiction, that
$$\forall u \in \mathbb{N}^{d} \exists x_{u}$$
 s.t.
 $\|Tx_{u}\| \ge N \cdot \|v_{u}\|$.
 \mathbb{D} inde both sides by $\||v_{u}||_{1}$ we get $\|T[\frac{x_{u}}{\log u}\}\| \ge u_{1}$, o
 $v_{u} = c_{u}$ case de $\|T\|x_{u}\| = 1$ and v_{u} have
 $\|Tx_{u}\| \ge u_{1}$ and e_{u} in the set $\|T[\frac{x_{u}}{\log u}]\| \ge u_{1}$.
 $\exists v_{u} = c_{u}$ case de $\|T\|x_{u}\| = 1$ and v_{u} have
 $\|Tx_{u}\| \ge u_{1}$ and e_{u} in the set $\|T[\frac{x_{u}}{\log u}]\| \ge u_{1}$.
 $\exists v_{u} = \frac{1}{2} \longrightarrow 0$, contradicting $(\#)$.
For any linear $T: X \Rightarrow Y$, let $\|T\|\| = \sup_{u \neq u} \|Tx_{u}\|$, call that
 u_{u} have $T[\frac{x_{u}}{u}] = \frac{1}{2} \longrightarrow 0$, contradicting $(\#)$.
For any linear $T: X \Rightarrow Y$, let $\|T\|\| = \sup_{u \neq u} \|Tx_{u}\|$, call that
 u_{u} more of T . This is indeed a more: $\|H^{-1}\|$ $\|x_{u}\| = \sup_{u \neq u} \|Tx_{u}\|$, call that
(i) $\|T\| = 0$ cases $Tx = 0$ for K ($x > T = 0$).
(ii) $\|T\| = 0$ cases $Tx = 0$ for K ($x > T = 0$).
(iii) $\|T\| = 1 |I| \cdot \|T\|\|$ for all $c \in \mathbb{R}$.
(iv) $\|T\| = |U| \cdot \|T\|\|$ for all $c \in \mathbb{R}$.
(iv) $\|T\| = |U| \cdot \|T\|\| \|T\|\|$ bunch $\||[T_{1} + T_{u}](x)|| = \|T_{1} \times T_{u} \times \|z_{u}\| \le \|T_{1} x\| + \|T_{u}\| \||x_{u}\||$.
The unce also satisfies the billowing. If $T: X \Rightarrow Y$ of $S: Y \to Z$, then
(iv) $\|S \cdot T\| \le \|S\| \cdot \|T\|$. Indeed, $\|G \circ T(x)\| \le \|S\| \le \|Tx\| \le \|S\| \le \|Tx\| \le \|S\|$.
(if) $\|T\| \cdot \|x\|$.
Withing $L[X, Y]$ denote the space of all field linear framediance
 $ayuipped$ with this norm, becomes a uncod vector space itself.
Proof. Intermediates prove the $L(K, Y)$ is a Branch space.
 T_{oot} . Intermediates $|T|_{v}$ is also denoted by $B(x)$ and (w) makes this
a normed algebra, havity studied in framediated analysis, in

perficular C^k-algebras ad von Nemmann algebras.
An important space is
$$L(K, R)$$
, where elements are celled
bill times for disords. This space is colled the dual space of X
and denoted by , e.g., X or \hat{X} or something else.
I goves. For d (N', unsider the set $d := \{0, 1, ..., d-1\}$ as a measure
space with the countring measure. Because all subsets of d are
measurable, $L(d) = the set of all functions $d \rightarrow tR$, i.e. $U(d) = R^d$, engineed with
the norm $\|ff\|_{L^{1/2}} \sum_{i=1}^{n} |f_i|$, where $f := (f_0, f_1, ..., f_{d-1})$. But R^d is studied using
other measurable, $L(d) = the set of all functions $d \rightarrow tR$, i.e. $U(d) = R^d$ engineed with
the norm $\|ff\|_{L^{1/2}} \sum_{i=1}^{n} |f_i|$, where $f := (f_0, f_1, ..., f_{d-1})$. But R^d is studied using
other meases $\|f_i\|_{L^{1/2}}$ to each other $(i, i, bi - tips)diff)$ bence d is
the norm $\|ff\|_{L^{1/2}} \sum_{i=1}^{n} |f_i|_i$ where $f := (f_0, f_1, ..., f_{d-1})$ duote the set of
measurable functions $X \rightarrow R$ and $\|ff\|_{L^{1/2}}$ bence d is
finite. Howeves, even taking $d := \|V|$ creates different spaces with
duran different meas.
Def. Ut (K, f) is a vector space, product $U(X, f)$ duote the set of
measurable functions equal if they agree a.e.
Prop. $L'(K, f)$ is a vector space.
Reading two only chose dorm where $f = 2^p (\|f_i\|_{f}^2 + |f_i|^p)$, so
 $\|ff_i|_{f = 1}^p |f_i|_{i} \leq 2^p \|f_i|_{f}^p |f_{i}|_{i} + 2^p \|f_i|_{f}^p |f_{i}|_{i} < \infty$.
Def. Ut $(K, f) \rightarrow f_{0,\infty}$ by $\|f_i\|_{f} := (\int |f_i|^p)^{\frac{1}{p}}$.
Prof. Note that for any a_j is $f = measure.
Prof. Note that for any a_j bod, we have a^{d-1} bbr $(a+b)^p$.$$$